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Abstract A numerical scheme that has been successfully used to solve a wide variety of
compressible flow problems, entitled the space-time conservation element and solution element
(CE/SE) method, is extended to predict the effects of gaseous cavitation in moderate to heavily
loaded bearings. The formulation of the two-dimensional, finite length, bearing problem is
presented. The numerical results obtained are compared with other numerical solutions to
demonstrate the superior ability of the method to solve such problems.
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Nomenclature
a ¼ U

2 þ gc
b0h
12m

›h
›x

for the dimensional

form of the governing equation

¼ 1
4p þ gc

�b0 �h
48p 2

›�h
›�x

for the non-

dimensional form of the
governing equation

b ¼ gc
b0h 2

12m for the dimensional

form of the governing equation

¼ gc
�b0 �h 2

48p 2 for the non-dimensional

form of the governing equation

c ¼ gc
b0h 2

12m
›h
›z

for the dimensional

form of the governing equation

¼ gc
�b0 �h

48p 2
›�h
›�z

for the non-

dimensional form of the
governing equation

C ¼ radial clearance

d ¼ gc
b0h 2

12m for the dimensional form

of the governing equation

¼ gc
�b0 �h 2

48p 2 for the non-dimensional

form of the governing equation

f ¼ au 2 b ›u
›x

flux term in x

direction
~F ¼ f~i þ g~k vector flux term

g ¼ cu 2 d ›u
›z

flux term in z

direction

g c ¼ switch function

h ¼ film thickness
h̄ ¼ h/C non-dimensional film

thickness
~i; ~k ¼ unit vectors in circumferential

and in axial directions,
respectively

L ¼ length of the bearing (in axial
direction)

~n ¼ unit vector normal on the
contour line, oriented outwards

p ¼ fluid pressure
pc ¼ cavitation pressure
t ¼ time
u ¼ hu for the dimensional form of

the governing equation
¼ �hu for the non-dimensional

form of the governing equation
U ¼ velocity in circumferential

direction (vR)
x ¼ circumferential coordinate
x̄ ¼ x/(2pR) non-dimensional

circumferential coordinate
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Introduction
The space-time conservation element and solution element (CE/SE) method
was proposed for the first time by Chang and To (1991). Over the past several
years it has been utilized in a number of fluid flow applications that involve
shock waves, contact discontinuities, acoustic waves, vortices and chemical
reactions. One of its main features is that it can simultaneously capture small
and large discontinuities (such as sound waves and shock waves) without
introducing numerical oscillations in the solution (Chang et al., 1999; Qin et al.,
2001; Wang et al., 2000). Accordingly, this new method is an excellent
candidate to be applied to the flow in cavitated bearings.

Historically, the effect of cavitation on the performance of bearings was
disregarded in numerical calculations. The common practice, known as
Gümbel (or half-Sommerfeld) boundary conditions, was to modify full film
results by setting negative relative pressures to zero (relative to the cavitation
pressure). Although the load carrying predictions were reasonably accurate,
the results violated the mass conservation principle. Consequently, several
other procedures have been proposed. Jakobsson and Floberg (1957) and later
Olsson (1965) introduced a set of self-consistent boundary conditions for
cavitation to be applied to Reynolds equation. This procedure is valid for
moderate to heavy loaded bearings and is generally called JFO theory. This
methodology is commonly incorporated into modern computational algorithms
for bearings, and is also implicitly included in the present method.

Previous computational methods used for this problem are known to have
some difficulties. Elrod’s algorithm (Elrod, 1981) necessitated, as the author

z ¼ axial coordinate
z̄ ¼ z=ð2pRÞ non-dimensional axial

coordinate
a ¼ exponent used in the second

form of artificial dissipation
b ¼ weight parameter

characterizing the second form
of artificial dissipation

b0 ¼ bulk modulus

b̄0 ¼ b0

mv
C
R

� �2
non-dimensional bulk

modulus
Dt ¼ time step
1 ¼ weight parameter

characterizing the first form of
artificial dissipation

m ¼ fluid viscosity
r ¼ fluid density
rc ¼ fluid density at cavitation

pressure
u ¼ r=rc non-dimensional density

in full film

¼ fractional film content in
cavitated region

v ¼ angular velocity of the journal
bearing

Subscripts and superscripts
( )0 ¼ value of the variable in the

point O
( )x, ( )z, ( )t ¼ partial derivative with respect

to x, z, and t, respectively
( )a ¼ value obtained in the scheme

without artificial dissipation
( )c ¼ derivative calculated using a

central difference formula
ð Þa21 ¼ derivative calculated using the

a 2 1 scheme
ð Þa212a2b ¼ derivative calculated using the

a 2 1 2a2 b scheme
( )n ¼ time step n
( )w ¼ derivative calculated using

non-linear weighted averaging
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pointed out, “considerable experimentation” to develop the algorithm. It has
only first order accuracy in the cavitated region, while in the full film region,
the algorithm is second order accurate; an oscillation in the cavitation front is
often found to occur. The method proposed by Vijayaraghavan and Keith
(1989) is based on concepts that were used in transonic flow (Vijayaraghavan
et al., 1990). Their method uses a number of features from the Elrod algorithm,
but does not “rely on experimentation” to develop the solver. It should be noted
that the method proposed by Vijayaraghavan and Keith has the same accuracy
as the Elrod’s algorithm in cavitated regions and in the full film region and, like
Elrod’s method, loses accuracy at the cavitation boundaries.

In this context, a method that is conceptually simple and has the capacity to
accurately predict the fluid film flow including the boundaries of the cavitated
region(s), without numerical oscillations or smearing, is welcomed.

The CE/SE method applied to the Reynolds equation has some noticeable
advantages: it is second order over the entire domain, it computes in an unified
way the pressure induced flow for all the regions and, because it solves a set of
integral equations derived directly from the physical conservation laws, the
scheme is able to naturally capture the flow discontinuities (cavitation
boundaries). As also shown by the one-dimensional application (Cioc and Keith,
2002), the CE/SE method can provide better results for the cavitation and
reformation front positions, as well as for the distributions of the state
variables in their vicinity.

Analysis
Analytical formulation
The two-dimensional, transient Reynolds equation, written for a Newtonian
compressible fluid in laminar flow, is

›rh

›t
þ

›

›x

rhU

2
2

rh3

12m

›p

›x

� �
þ

›

›z
2

rh3

12m

›p

›z

� �
¼ 0: ð1Þ

The density of the lubricant is related to the film pressure through the
definition of the bulk modulus b0

b0 ¼ r
›p

›r
: ð2Þ

In order to work in terms of density, a non-dimensional density variable, u is
introduced

u ¼
r

rc
; ð3Þ

where rc is the density of the lubricant at the cavitation pressure, considered
constant. In this case the bulk modulus definition becomes
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b0 ¼ u
›p

›u
: ð4Þ

The Reynolds equation yields, in terms of the non-dimensional density

›rchu

›t
þ

›

›x

rchuU

2
2

rcb
0h3

12m

›u

›x

� �
þ

›

›z
2
rcb

0h3

12m

›u

›z

� �
¼ 0: ð5Þ

Considering that in the cavitation region the flow induced by the pressure is
negligible, i.e.

›

›x

rh3

12m

›p

›x

� �
¼

›

›x

rcb
0h3

12m

›u

›x

� �
ø 0;

›

›z

rh3

12m

›p

›z

� �
¼

›

›z

rcb
0h3

12m

›u

›z

� �
ø 0;

ð6Þ

a switch function, gc,

gc ¼
1 - full film region

0 - cavitated region

(
ð7Þ

is introduced into the pressure-density relation

gcb
0 ¼ r

›p

›r
; ð8Þ

so that the Reynolds equation can be written as

›rchu

›t
þ

›

›x

rchuU

2
2 gc

rcb
0h3

12m

›u

›x

� �
2

›

›z
gc

rcb
0h3

12m

›u

›z

� �
¼ 0: ð9Þ

The pressure-density relation yields, by direct integration,

p ¼ pc þ gcb
0 ln u; ð10Þ

where the cavitation pressure pc is a constant as a result of the switch function
assumption.

Numerical formulation
A more suitable form of equation (9) for the numerical formulation can be
obtained using a new variable u

u ¼ hu: ð11Þ

In terms of u, the Reynolds equation can be written as
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›u

›t
þ

›f

›x
þ

›g

›z
¼ 0; ð12Þ

where the flux terms f and g are,

f ¼ au 2 b
›u

›x
; g ¼ cu 2 d

›u

›z
; ð13Þ

and the coefficients a, b, c and d are

a ¼
U

2
þ gc

b0h

12m

›h

›x
; b ¼ d ¼ gc

b0h2

12m
; c ¼ gc

b0h

12m

›h

›z
: ð14Þ

In non-dimensional form, equation (12) has the same expression, with

a ¼
1

4p
þ g

�b0 �h

48p2

›�h

›�x
; b ¼ d ¼ g

�b0 �h2

48p2
; c ¼ g

�b0 �h

48p2

›�h

›�z
; u ¼ �hu:

All coefficients a, b, c and d are functions of space x and z. If the geometry is
time dependent, then the film is expressed as h ¼ hðx; z; tÞ; and these
coefficients are also time dependent. However, when developing the numerical
algorithm, these coefficients are considered to be locally constant.

A first order Taylor series for the unknown function u, starting from an
expansion point Oðx0; z0; t0Þ is

u ø u0 þ ðuxÞ0ðx 2 x0Þ þ ðuzÞ0ðz 2 z0Þ þ ðutÞ0ðt 2 t0Þ; ð15Þ

where the time derivative, in conformity with equation (12), can be written as

ðutÞ0 ¼ 2
›f

›x

� �
0

2
›g

›z

� �
0

: ð16Þ

Since the flux terms f and g can be considered as functions of the unknown
u and its space derivatives f ¼ f ðu; ux; uzÞ; g ¼ gðu; ux; uzÞ using a first order
approximation, we may write that

›f

›x
ø

›f

›u
ux ¼ aux;

›g

›z
ø

›g

›u
uz ¼ cuz: ð17Þ

Accordingly, equation (15) becomes

u ø u0 þ ðuxÞ0ðx 2 x0Þ þ ðuzÞ0ðz 2 z0Þ2 ½a0ðuxÞ0 þ c0ðuzÞ0�ðt 2 t0Þ: ð18Þ

In the same way functions f and g are approximated as

HFF
13,2

220



f ø
›f

›u

� �
0

u þ
›f

›ux

� �
0

ux þ
›f

›uz

� �
0

uz ¼ a0u 2 b0ux;

g ø
›g

›u

� �
0

u þ
›g

›ux

� �
0

ux þ
›g

›uz

� �
0

uz ¼ c0u 2 d0uz:

ð19Þ

Alternately, considering that in the vicinity of the expansion point Oðx0; z0; t0Þ;
ux ø const: ¼ ðuxÞ0; uz ø const: ¼ ðuzÞ0 and substituting the expression of
u from equation (18) into equation (19) yields

f ø a0u0 2 b0ðuxÞ0 þ a0ðuxÞ0ðx 2 x0Þ þ a0ðuzÞ0ðz 2 z0Þ

2
�
a2

0ðuxÞ0 þ a0c0ðuzÞ0

�
ðt 2 t0Þ;

g ø c0u0 2 d0ðuzÞ0 þ c0ðuxÞ0ðx 2 x0Þ þ c0ðuzÞ0ðz 2 z0Þ

2
�
a0c0ðuxÞ0 þ c2

0ðuzÞ0
�
ðt 2 t0Þ:

ð20Þ

Consider a triangular mesh in the (x, z) plane. One triangle BCD and its three
neighbor elements are shown in Figure 1. Point A is the centroid of the triangle
BCD, while points E, F and G are the centroids of the neighbor triangles BCH,
CDI and BDJ.

The CE/SE method calculates the values of the dependent variables u, ux, uz

for point A at the time step t ¼ t nþ1
2 using the corresponding values of the same

variables for the points E, F and G at the time step t ¼ t n: In order to calculate
the three unknowns at the new time step, a system of three equations will be

Figure 1.
Triangular mesh element

and its neighbors
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derived. One equation can be obtained considering the quadrilateral ABEC.
Integrating simultaneously the governing equation (equation (12)), over the
surface of this quadrilateral and in time, between time steps t n and t nþ1

2

(see Figure 2), yields

ZZ
ABEC

Z t
nþ1

2

t n

›u

›t
dt dsþ

Z t
nþ1

2

t n

ZZ
ABEC

›

›x
ðau2buxÞþ

›

›z
ðcu2duzÞ

	 

dsdt ¼ 0:

ð21Þ

Equation (21) implies flux conservation in the three-dimensional space (x, z, t).
Performing the time integration for the first term and transforming the surface
integration into a contour integration for the second term (using Green
theorem) yields

ZZ
ABEC

unþ1
2 2un

� �
dsþ

Z t
nþ1

2

t n

I
ABEC

~F · ~ndsdt ¼ 0; ð22Þ

where ~n is the outward directed unit vector normal to the contour, and

~F¼ f~iþg~k ð23Þ

is a vector in the (x, z) plane characterized by the Cartesian unit vectors ð~i;~kÞ:
Functions f and g are given by equation (13).

Figure 2.
Conservation volume in
the (x, z, t) space
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Functions u, f, g are next substituted with linear approximations (see equations
(18) and (20)), so that equation (22) can be written as

u
nþ1

2

ABEC 2 un
ABEC

� �
AABEC þ

Dt

2

I
ABEC

~F · ~n ds

� �nþ1
4

¼ 0; ð24Þ

where u
nþ1

2

ABEC and un
ABEC designate the value of u in the center of the

quadrilateral ABEC at the time steps n þ 1
2 and n, AABEC is the area of the

quadrilateral ABEC and the contour integration is calculated at the time t nþ1
4 ¼

t n þ Dt
4 : The values u

nþ1
2

ABEC and un
ABEC are evaluated from equation (18) using

the Taylor expansion point A0ðxA0 ; zA0 Þ at the time step t nþ1
2 and E 0ðxE 0 ; zE 0 Þ at

the time step t n, respectively. This yields,

u
nþ1

2

ABEC ¼ u
nþ1

2

A0 þ ðxABEC 2 xA0 Þ
›u

›x

����
nþ1

2

A0

þ ðzABEC 2 zA0 Þ
›u

›z

����
nþ1

2

A0

;

un
ABEC ¼ un

E 0 þ ðxABEC 2 xE 0 Þ
›u

›x

����
n

E 0

þ ðzABEC 2 zE 0 Þ
›u

›z

����
n

E 0

:

ð25Þ

Note that the expansion points are not necessarily the centers of the triangular
elements, but can be chosen in any suitable way.

The contour integral from the second term in equation (24) can be divided
into four line integrals along the sides of the quadrilateral.

I
ABEC

~Fnþ1
4 · ~n ds ¼

Z
AB

~Fnþ1
4 · ~nAB ds þ

Z
BE

~Fnþ1
4 · ~nBE ds

þ

Z
EC

~Fnþ1
4 · ~nEC ds þ

Z
CA

~Fnþ1
4 · ~nCA ds:

ð26Þ

Each of these four line integrals, consistent with the previous approximations,
is calculated considering that each integrand has a linear form. From the mean
value theorem of calculus, the value of each line integral is equal to the value of
the integrand at the mid-point of the line segment multiplied by the length of

the segment. For the segment AB, considering A0; t nþ1
2

� �
as the Taylor series

expansion point in equation (20), yields
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Z
AB

~F nþ1
4·~nAB ¼ ½ fnxAB þ gnzAB�

nþ1
4

AþB
2

LAB

¼ ðau 2 buxÞ
��nþ1

2

A0 þ ðauxÞ
��nþ1

2

A0

xA þ xB

2
2 xA0

� �
þ ðauzÞ

��nþ1
2

A0

zA þ zB

2
2 zA0

� �	

þ ða2ux þ acuzÞ
nþ1

2

A0

Dt

4



ðzB 2 zAÞ

2 ðcu 2 duzÞ
��nþ1

2

A0 þ ðcuxÞ
��nþ1

2

A0

xA þ xB

2
2 xA0

� �
þ ðcuzÞ

��nþ1
2

A0

zA þ zB

2
2 zA0

� �	

þ
�
acux þ c2uz

�nþ1
2

A0

Dt

4

i
ðxB 2 xAÞ

ð27Þ

In equation (27), the exterior unit normal to the segment AB of length LAB has
been substituted with its expression,

~nAB ¼ nxA B
~i þ nzAB

~j ¼
ðzB 2 zAÞ

~i 2 ðxB 2 xAÞ
~j

LAB

: ð28Þ

Similar expressions can be written for the other three line integrals of equation
(26). Note that the Taylor expansions must be performed starting from point

A0; t nþ1
2

� �
for the line integralsZ

AB

~Fnþ1
4 · ~nAB ds

and Z
CA

~Fnþ1
4 · ~nCA ds;

while for the integrals Z
BE

~Fnþ1
4 · ~nBE ds

and Z
EC

~Fnþ1
4 · ~nEC ds

point (E0, t n) must be considered. Since the calculations can be relatively
complicated for a generic grid, a symbolic mathematical code (MAPLE) was
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used. Performing all the calculations and substituting into equation (22) yields
the first equation for the considered triangular element

a1u
nþ1

2

A0 þ b1ðuxÞ
nþ1

2

A0 þ c1ðuzÞ
nþ1

2

A0 þ d1u
n
E 0 þ e1ðuxÞ

n
E 0 þ f 1ðuzÞ

n
E 0 ¼ 0; ð29aÞ

where a1, b1, c1, d1, e1, f1 are coefficients that depend on the geometry
(coordinates of points A, A0, E, E 0, B, C and the center of quadrilateral ABEC)
and on the governing equation coefficients a, b, c, d given by equation (14),
evaluated at points A0 and E 0 at the time steps n þ 1

2 and n, respectively.
Considering the quadrilaterals ACFD and ADGB, two additional equations

similar to equation (29(a)) are developed

a2u
nþ1

2

A0 þ b2ðuxÞ
nþ1

2

A0 þ c2ðuzÞ
nþ1

2

A0 þ d2u
n
F 0 þ e2ðuxÞ

n
F 0 þ f 2ðuzÞ

n
F 0 ¼ 0; ð29bÞ

a3u
nþ1

2

A0 þ b3ðuxÞ
nþ1

2

A0 þ c3ðuzÞ
nþ1

2

A0 þ d3u
n
G0 þ e3ðuxÞ

n
G0 þ f 3ðuzÞ

n
G0 ¼ 0: ð29cÞ

All values at the time step n (previous half-time step) are known, so that
equations (29(a)-(c)) form a system of three equations with three unknowns

u
nþ1

2

A0 ; ðuxÞ
nþ1

2

A0 ; ðuzÞ
nþ1

2

A0 : Written in this form, the method is locally implicit. Note
that the coefficients of the system, being functions of the coefficients a, b, c, d

given by equation (14), depend also on the unknown u
nþ1

2

A0 through the switch
coefficient gc. An iterative method to solve this system is appropriate.

An alternate approach is to choose the Taylor series expansion point A0 as
the center of the hexagon BECFDG. The other three Taylor series expansion
points E 0, F 0, G 0 can be chosen arbitrarily; however, in order to maintain
consistency, they are chosen as the centers of the corresponding hexagons
formed around the neighboring triangular elements. Note that the values of the
dependent variables at time step n, i.e. u, ux, uz, must be known at these points.
Note also that, as with the previous approximations, the values of the
derivatives ux, uz at any given time step are considered constant on the surface
of a triangular element (such as BCD), while the value of the variable u at the
same time step can be calculated using the first order Taylor expansion
(equation (15)).

Adding equations (29(a)-(c)) yields a new equation that represents the flux
conservation over the hexagon and over one half-time step. When point A0 is
the center of the hexagon BECFDG, this equation has a simpler form given by

asumu
nþ1

2

A0 þ d1u
n
E 0 þ e1

�
ux

�n

E 0 þ f 1

�
uz

�n

E 0 þ d2u
n
F 0 þ e2

�
ux

�n

F 0 þ f 2

�
uz

�n

F 0

þ d3u
n
G 0 þ e3

�
ux

�n

G 0 þ f 3

�
uz

�n

G 0 ¼ 0;

ð30Þ

where
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asum ¼ AABEC þ AACFD þ AADGB ¼ ABECFDG: ð31Þ

This equation has only one unknown, u
nþ1

2

A0 ; and can easily be solved explicitly.
It is also important to note that all the coefficients in equation (30) depend only
on the geometry (coordinates of the points) and the values of the dependent
variables at the previous half-time step so that no iterative method is needed.

After calculating the value u
nþ1

2

A0 ; the values of the other two dependent

variables ðuxÞ
nþ1

2

A0 and ðuzÞ
nþ1

2

A0 can be calculated using any two of the equations

in the set, equations (29(a)-(c)). Since u
nþ1

2

A0 is known at this stage of calculations,
the value of gc is also known, so that all coefficients in equations (29(a)-(c)) are
determined.

In the original form, also known as the a form, the algorithm is “non-
dissipative if it is stable” (Chang et al., 1998). In order to insure stability (not
only neutral stability), the method must have at least some form of artificial
dissipation. The authors of the method have proposed two forms: the a 2 1
scheme and the a 2 12 a2 b scheme. Both schemes differ from the a scheme

only in the way the derivatives ðuxÞ
nþ1

2

A0 and ðuzÞ
nþ1

2

A0 are calculated. Since the

value u
nþ1

2

A0 is computed from equation (30), the flux conservation over the

boundary of the hexagon BECFDG and in time is still insured. However,

because the derivatives ðuxÞ
nþ1

2

A0 and ðuzÞ
nþ1

2

A0 are not calculated from the system,
equations (29(a)-(c)), the flux conservation is not insured in this case over each
of the quadrilaterals ABEC, ACFD and ADGB.

The a21 scheme starts from the principle that central differencing
computation of the derivatives provides numerical dissipation. In this scheme,
the values of the dependent variable u at the new time step n þ 1

2 are evaluated
at three new points E 00, F 00, G 00. Let A00 be the center of the triangle E 0F 0G0

(Figure 3) and let A00A0 be the vector that displaces points E 0, F 0, G 0 into the
three new points E 00, F 00, G 00 respectively, i.e.

A00A0
�! ¼

E 0E 00
�! ¼

F 0F 00
�! ¼

G0G00
�! ð32Þ

This procedure insures that the center of the triangle E 00F 00G00 coincides with
point A0.

The values u
nþ1

2

E 00 ; u
nþ1

2

F 00 and u
nþ1

2

G00 can easily be computed using Taylor

expansion (equation (18)) with the expansion points E 0;F 0;G 0; respectively,
and at the time step n. For instance,

u
nþ1

2

E 00 ¼ un
E 0 þ

�
xE 00 2 xE 0

��
ux

�n

E 0 þ
�
zE 00 2 zE 0

��
uz

�n

E 0

2
Dt

2

�
an

E 0

�
uxÞ

n

E 0 þ cn
E 0 ðuz

�n

E 0

�
:

ð33Þ
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Similar expressions are used for the calculation of u
nþ1

2

F 00 and u
nþ1

2

G00 : Consider also

the value u
nþ1

2

A0 calculated from equation (30). In the space (x, z, u), four points

can be defined: O xA0 ; zA0 ; u
nþ1

2

A0

� �
; P xE 00 ; zE 00 ; u

nþ1
2

E 00

� �
; Q xF 00 ; zF 00 ; u

nþ1
2

F 00

� �
and

R xG00 ; zG00 ; u
nþ1

2

G00

� �
; as shown in Figure 3. Consider four planes each defined

by a set of three points: OPQ, OQR, ORP and PQR. In each of these planes
function u is linear in both x and z, so that the values of its partial space,
derivatives can easily be calculated.

In order to exemplify this simple procedure, consider the plane OPQ. In this
plane, function u has the expression

uðx; zÞOPQ ¼
›u

›x

� �
OPQ

x þ
›u

›z

� �
OPQ

z þ u0 ð34Þ

where u0 is a constant, while ›u
›x

� �
OPQ

and ›u
›z

� �
OPQ

are the spatial partial

derivatives corresponding to the triangle OPQ, derivatives that are to be
determined. Imposing the conditions

uðxA0 ; zA0 Þ ¼ u
nþ1

2

A0 ðpoint OÞ; uðxE 00 ; zE 00 Þ ¼ u
nþ1

2

E 00 ðpoint PÞ;

uðxF 00 ; zF 00 Þ ¼ u
nþ1

2

F 00 ðpoint QÞ;

ð35Þ

and solving the linear system of three equations with three unknowns with
Cramer’s rule, the values of the spatial partial derivatives are

Figure 3.
The (x, z, u) space

considered for a 2 1 and
a 2 1 2 a 2 b schemes
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›u

›x

� �
OPQ

¼
D1

D
;

›u

›z

� �
OPQ

¼
D2

D
; ð36Þ

where D, D1 and D2 are the determinants

D ¼

xA0 zA0 1

xE 00 zE 00 1

xF 00 zF 00 1

��������

��������
; D1 ¼

u
nþ1

2

A0 zA0 1

u
nþ1

2

E 00 zE 00 1

u
nþ1

2

F 00 zF 00 1

����������

����������
; D2 ¼

xA0 u
nþ1

2

A0 1

xE 00 u
nþ1

2

E 00 1

xF 00 u
nþ1

2

F 00 1

����������

����������
: ð37Þ

Similar expressions can easily be deduced for the partial derivatives expressed
in the other three planes OQR, ORP and PQR. Finally, define the “central”
derivatives at point A0 as the average values of the derivatives obtained for the
three triangles OPQ, OQR and ORP, i.e.

ðuc
xÞ

nþ1
2

A0 ¼
1

3

›u

›x

� �
OPQ

þ
›u

›x

� �
OQR

þ
›u

›x

� �
ORP

" #
;

ðuc
zÞ

nþ1
2

A0 ¼
1

3

›u

›z

� �
OPQ

þ
›u

›z

� �
OQR

þ
›u

›z

� �
ORP

" #
:

ð38Þ

Because, as shown earlier, point A0 is the center of the triangle E 00F 00G00; the
values obtained with equation (38) are the same as the values obtained for the

plane PQR. Thus, ðuc
xÞ

nþ1
2

A0 and ðuc
zÞ

nþ1
2

A0 can be interpreted as central-difference

estimates of the space derivatives at point A0. Note also that the computation of
these derivatives is entirely explicit.

The a 2 1 scheme considers a weighted average between the values of
the derivatives calculated with the a scheme and the values obtained with
equation (38)�

ua21
x

�nþ1
2

A0

¼

�
ua

x

�nþ1
2

A0

þ 21

�
uc

x

�nþ1
2

A0

2

�
ua

x

�nþ1
2

A0

" #
;

�
ua21

z

�nþ1
2

A0

¼

�
ua

z

�nþ1
2

A0

þ 21

�
uc

z

�nþ1
2

A0

2

�
ua

z

�nþ1
2

A0

" #
:

ð39Þ

Note that for 1 ¼ 0:5;�
ua21

x

�nþ1
2

A0

¼

�
uc

x

�nþ1
2

A0

;

�
ua21

z

�nþ1
2

A0

¼

�
uc

z

�nþ1
2

A0

;

so that the a 2 1 scheme becomes completely explicit.
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The a 2 12 a2 b scheme considers first the absolute values of the
gradients of function u calculated in the three planes OPQ, OQR and ORP, i.e.

uOPQ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ

2
OPQ þ ðuzÞ

2
OPQ

q
ð40Þ

where (ux)OPQ and (uz)OPQ are calculated with equation (36). Similarly,

uOQR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ

2
OQR þ ðuzÞ

2
OQR

q
; uORP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuxÞ

2
ORP þ ðuzÞ

2
ORP

q
: ð41Þ

Two new nonlinear weighted average values for the space derivatives can be
computed

�
uw

x

�nþ1
2

A0 ¼

�
uOQRuORP

�a�
ux

�
OPQ

þ
�
uORPuOPQ

�a�
ux

�
OQR

þ
�
uOPQuOQR

�a�
ux

�
ORP�

uOQRuORP

�a
þ
�
uORPuOPQ

�a
þ
�
uOPQuOQR

�a ;

�
uw

z

�nþ1
2

A0 ¼

�
uOQRuORP

�a�
uz

�
OPQ

þ
�
uORPuOPQ

�a�
uz

�
OQR

þ
�
uOPQuOQR

�a�
uz

�
ORP�

uOQRuORP

�a
þ
�
uORPuOPQ

�a
þ
�
uOPQuOQR

�a
ð42Þ

where a is a parameter, usually with the value 1 or 2. Finally, the derivatives
computed with the a212a2b scheme are weighted averages between the

values ðua
xÞ

nþ1
2

A0 and ðua
z Þ

nþ1
2

A0 calculated from the system, equation (29(a)-(c)),

ðuc
xÞ

nþ1
2

A0 ; ðuc
zÞ

nþ1
2

A0 obtained with equation (38) and ðuw
x Þ

nþ1
2

A0 ; ðuw
z Þ

nþ1
2

A0 calculated with
equation (42), i.e.

�
ua212a2b

x

�nþ1
2

A0 ¼
�
ua

x

�nþ1
2

A0 þ21
�
uc

x

�nþ1
2

A0 2
�
ua

x

�nþ1
2

A0

h i

þb
�
uw

x

�nþ1
2

A0 2
�
uc

x

�nþ1
2

A0

h i
;

�
ua212a2b

z

�nþ1
2

A0 ¼
�
ua

z

�nþ1
2

A0 þ21
�
uc

z

�nþ1
2

A0 2
�
ua

z

�nþ1
2

A0

h i

þb
�
uw

z

�nþ1
2

A0 2
�
uc

z

�nþ1
2

A0

h i
:

ð43Þ

The authors of the method (Chang et al., 1998) indicate that the numerical
dissipation introduced by the 1 term is effective in damping out numerical
instabilities that occur in the smooth regions of the solution, while the a2b
term is effective in damping out the wiggles that can occur in the vicinity of the
solution discontinuities. Stability requires, besides the CFL condition, that
a212a2b scheme must also satisfy the following conditions
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0#1#1; b$0; a$0: ð44Þ

The a21 scheme can be considered as a particular case of the a212a2b
method for b¼0 or a¼0; while the a scheme can be obtained when the
supplementary condition 1¼0 is satisfied. The most computationally efficient
scheme, as previously shown, is obtained for 1¼0:5 because in this case, the
method is purely (global and local) explicit; only this case has been used to
obtain the results shown in the next section of this work.

Considering that at one half-time step, the values u, ux, uz have been
calculated for point A0, the values of the same dependent variables can be
determined at the same half-time step at any other point inside the hexagon
BECFDG using the simplified Taylor expansion (equation (18)), (without the
time dependent term) and considering that ux and uz are constant over the
surface of the hexagon.

Figure 4 shows a simple, uniform, grid. On one half-time step, the values of
the dependent variables u, ux, uz are calculated for one set of triangular
elements (centers), like those marked with dark points in the figure. At the next
half-time step the other set of triangular elements are considered – marked
with hollow circles. At the next time step, the first set of elements are
considered again; in conclusion, two half-time steps are necessary to return to
one set of elements.

An alternative method of estimating ux and uz at the new time step has been
proposed recently (Liu and Chen, 2001). This method requires, at each half-time
step, the calculation of the new value variable u for all triangular elements. In a
similar way with the a 2 12 a2 b method, consider in the three-dimensional

space (x, z, u) four points defined as O xA0 ; zA0 ; u
nþ1

2

A0

� �
; P1 xE 0 ; zE 0 ; u

nþ1
2

E 0

� �
;

Q1 xF 0 ; zF 0 ; u
nþ1

2

F 0

� �
and R1 xG0 ; zG0 ; u

nþ1
2

G0

� �
: Three planes can be considered, each

defined by a set of three points: OP1Q1, OQ1R1 and OR1Q1. Considering that

Figure 4.
Uniform triangular mesh
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function u is linear both in x and in z directions over the domains defined by
these planes, the partial derivatives can easily be calculated over the three
domains (triangles OP1Q1, OQ1R1 and OR1Q1) using equations similar with
equations (36) and (37). Let ðuxÞOP1Q1

; ðuzÞOP1Q1
; ðuxÞOQ1R1

; ðuzÞOQ1R1
and

ðuxÞOR1P1
; ðuzÞOR1P1

be these values, respectively. The partial derivatives at the
new time step can now be estimated using equations similar to equations
(40)-(42). No 1-type artificial dissipation is introduced.

No significant differences between the results obtained using any of the
above artificial dissipation schemes have been observed.

In conclusion, the unknowns at the new half-time step n þ 1
2 are calculated as

functions of the old half-time step n using explicit expressions (equations (30)
and (43)). At this stage, the grid is shifted. For example, when at time step n the
variables are known at the dark nodes (Figure 4), at the half-time step n þ 1

2
the unknowns are calculated at the hollow nodes (Figure 4). It takes another
half-time step, n þ 1

2 ! n þ 1; for the grid to return to the dark nodes. This
peculiarity explains the half-time division. Also, the fact that the derivatives
are not calculated directly from the conservation laws (which was the price
paid for making the scheme fully explicit) does not diminish the value of the
method: the conservation laws are still satisfied within the larger, hexagonal
elements. The method is simultaneously accurate (the conservation is satisfied
both in space and time for the hexagonal elements) and explicit
(computationally efficient). It is these characteristics that provide the
strength of the CE/SE method.

Results and discussion
In order to determine the performance of the method, several numerical
examples are considered. The results are compared with the results obtained
from other numerical methods, as well as with experimental data. Only the
steady state solution, obtained by time integration until the state parameters
stabilize, is considered.

Circular journal bearing
A standard journal bearing with one inlet groove is first considered.
The geometry and the fluid characteristics are presented in Table I.

Figures 5 and 6 show a comparison between the pressure distributions and
the fluid film content u obtained with CE/SE method and with the type
difference method (Vijayaraghavan and Keith, 1989). Two transverse sections
through the bearing at z ¼ 0 and z ¼ L=4 are presented for each method. Note
that the bearing z coordinate ranges between the values 2L=2 # z # L=2 so
that z ¼ 0 is the symmetry plane. The differences between the two methods are
relatively small; the maximum pressure predicted using type differencing is 6.7
percent lower than the maximum pressure calculated with the present method,
while the total load is only 1.3 percent lower. The difference between
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the attitude angles calculated with the two methods is 0.48. Two cavitated
regions, u , 1; are visible. The larger one is located immediately before the
lubricant supply position, and it will be discussed in the following paragraph.
The smaller cavitated region is located around 1628 circumferential coordinate.
Figure 6 shows that for this second cavitated region, both methods predict
u < 1 at the symmetry plane, z ¼ 0; and u , 1 at z ¼ L=4 which indicates that
the cavitation is more pronounced toward the ends of the bearing than at
the center.

Figure 5.
Pressure distribution for
a circular journal bearing
with one inlet groove

Parameter Value Units

Length 26.0 £ 1023 m
Diameter 45.0 £ 1023 m
Clearance 15.0 £ 1026 m
Relative eccentricity 0.8 –
Lub. supply position 120 deg
Supply pressure (gage) 5.458 £ 105 Pa
Velocity 3952 rot/min
Viscosity 0.00325 Pa s
Bulk modulus (b0) 1.21£108 Pa
Cavitation pressure (gage) 0 N/m2

Table I.
Physical conditions
for circular journal
bearing
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In Figure 6, for the larger cavitated region, the type differencing method seems
to be able to handle the large discontinuity for the fractional film content better
than the CE/SE method. However, the discontinuity was not actually calculated
in the type differencing code results. Rather, two boundaries (the two sides of
the lubricant supply pocket) are next to the other, so that the sharp
discontinuity in the fractional film content distribution is only due to the
geometry. On the other hand, the computational domain used by CE/SE code is
continuous (periodic boundary conditions are used at one circumferential
position), so that the fractional film content discontinuity naturally appears in
the field. This approach was possible only because this method is able to cope
with large discontinuities without introducing significant numerical smearing
and/or oscillations. The code developed using this method is thus more general
and can be applied to bearings where the computational domain cannot be split
at the lubricant location (when the supply pocket is inside the bearing, without
reaching the bearing margins).

Wave journal bearing
The geometry of a wave bearing is more complex compared to the geometry of
a standard journal bearing (Dimofte, 1995). An example of the film thickness

Figure 6.
Fractional film content

distribution for a circular
journal bearing with one

inlet groove
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distribution for a three wave bearing as a function of the circumferential
coordinate is shown in Figure 7. The other physical conditions are presented in
Table II.

Figure 8 shows the pressure distribution obtained using the present
method compared with the pressure calculated by Dimofte (1995), using a
finite difference method to solve the steady form of Reynolds equation with

Parameter Value Units

Length 26.0 £ 1023 m
Diameter 45.0 £ 1023 m
Clearance 15.0 £ 1026 m
Number of supply pockets 3 –
Lub. supply positions 86, 206, 326 deg
Supply pockets width 4.0 mm
Supply pressure (gage) 5.458 £ 105 Pa
Velocity 3952 rot/min
Viscosity 0.00325 Pa s
Density 902.0 Kg/m3

Bulk modulus b0(b̄0) 1.2105£108 (40.0) Pa
1.029£107 (3.4)

Cavitation pressure (gage) 0 N/m2

Table II.
Physical conditions
for wave bearing

Figure 7.
Fluid film thickness
distribution in a three-
wave bearing
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Gümbel (or half-Sommerfeld) boundary conditions. The results show similar
variations, however the peak pressures differ. The total load predicted by
the present method is 2,039 N, 13.7 percent higher than the load predicted
by Dimofte (1995). The difference between the predicted load directions
using the two codes is less than 1.68. These results have been obtained
using a value b0 ¼ 1:2105 £ 108 Pa: For a lower value b0 ¼ 1:029 £ 107 Pa;
the pressure distribution is shown in Figure 9. In this case, even though
both peak pressures predicted by the present method and Dimofte are
almost the same, the total load compared with the previous case does not
change significantly. The load directions however, have a larger difference
(5.58). In brief, the film compressibility effects reduce the pressure peaks in
the bearing and also produce a change in the pressure distribution phase.
Note that, although the bulk modulus value for the oil used by Dimofte is
not known, the first case (b0 ¼ 1:2105 £ 108 Pa) probably uses a more
realistic value. Note as well that the code based on the present method
uses a film thickness distribution calculated by Dimofte considering the
elastic deformations of the shaft and bushing; this can also be a source of
error.

Figure 8.
Pressure distribution in a

wave bearing b̄0 ¼ 40.0
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Misaligned wave journal bearing
The misalignment of journal bearings can be defined using two parameters:
the angle a between the centerline and the direction of the misalignment at
the bearing center and the degree of misalignment dm that represents the
proportion of the actual misalignment from the maximum possible.
The misalignment is restricted by the condition that at the bearing axial
ends the film thickness reaches the value of zero. The physical conditions of the
bearing are presented in Table III. Because of the misalignment, the fluid film
thickness is a function of both the circumferential and axial coordinates, so that
for each value of the circumferential coordinate there exists a domain of
thickness variation, represented in dark color in Figure 10.

The pressure distribution in the bearing is shown in Figures 11(a) and 12(a),
while the fractional fluid film content is shown in Figure 13(a). The same
bearing with the same physical conditions and without misalignment shows
different values for the pressure distribution and fractional film content, as
seen in Figures 11(b), 12(b) and 13(b). The cavitation, respectively, the full film
regions for the misaligned and the aligned three-wave bearing are shown in
Figure 14(a) and (b). The load is 20,988 N for the aligned bearing and 36,100 N

Figure 9.
Pressure distribution in a
wave bearing b̄0 ¼ 3.4
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for the misaligned bearing, which shows that sometimes misalignment can
have a positive impact on bearing performance. This effect is due to the
expanded full film region that permits the development of higher pressures
inside the misaligned bearing.

Parameter Value Units

Length 45.0 £ 1023 m
Diameter 45.0 £ 1023 m
Clearance 15.0 £ 1026 m
Angle of misalignment 90 deg
Degree of misalignment 0.5 –
Number of supply pockets 1 -
Lub. supply position 100 deg
Supply pocket width 4.0 mm
Supply pressure (gage) 5.458 £ 105 Pa
Velocity 3952 rot/min
Viscosity 0.00325 Pa s
Density 902.0 Kg/m3

Bulk modulus b0(b̄0) 1.2105£108 (40.0) Pa
Cavitation pressure (gage) 0 N/m2

Table III.
Physical conditions

for misaligned wave
bearing

Figure 10.
Fluid film thickness

domain in a misaligned
three-wave bearing
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Figure 11.
(a) Pressure distribution
in a misaligned three-
wave bearing. (b)
Pressure distribution in a
three-wave bearing
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Figure 12.
(a) Pressure distribution

in a misaligned three-
wave bearing at different

axial sections.
(b) Pressure distribution
in an aligned three-wave
bearing at different axial

sections
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Figure 13.
(a) Fractional film
content distribution in a
misaligned three-wave
bearing at different axial
sections (b) fractional
film content distribution
in an aligned three-wave
bearing at different axial
sections
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Figure 14.
(a) Cavitation map in a
misaligned three-wave
bearing. (b) Cavitation

map in an aligned
three-wave bearing
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Conclusions
The CE/SE method was applied for the first time to investigate two-
dimensional flow in cavitated bearings. Contrasted with other numerical
schemes, the space-time CE/SE method insures conservation both in space
and time, so it is potentially more accurate. The theoretical formulation of the
problem was presented along with the numerical results obtained for different
types of bearings. The results were compared with the results obtained using
other numerical algorithms. The comparison shows that the CE/SE method,
when contrasted to previous numerical algorithms, can successfully predict
pressure distribution within bearings, including cases with discontinuities in
the lubricant film, without any special treatment. It is also important to
recognize that the CE/SE method is conceptually simple and entirely explicit,
which makes it also computationally efficient.
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